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Abstract
Mean-field pictures based on the standard time-dependent variational approach
have widely been used in studying nonlinear many-boson systems such as the
Bose–Hubbard model. Mean-field schemes relevant to Gutzwiller-like trial
states |F 〉, number-preserving states |ξ 〉 and Glauber-like trial states |Z〉 are
compared to evidence of specific properties of such schemes. After deriving the
Hamiltonian picture relevant to |Z〉 from that based on |F 〉, the latter is shown
exhibiting a Poisson algebra equipped with a Weyl–Heisenberg subalgebra
which preludes to the |Z〉-based picture. Then states |Z〉 are shown to be a
superposition of N -boson states |ξ 〉, and the similarities/differences between
the |Z〉-based and |ξ 〉-based pictures are discussed. Finally, after proving that
the simple, symmetric state |ξ 〉 indeed corresponds to a SU(M) coherent state,
a dual version of states |Z〉 and |ξ 〉 in terms of momentum-mode operators is
discussed together with some applications.

PACS numbers: 03.75.Fd, 03.65.Sq, 03.75.Kk

1. Introduction

The semiclassical formulation of many-mode boson models based on coherent-state (CS)
method [1, 2] has proven to be an effective tool in describing the behavior of interacting
bosons for many situations [3–11]. Such models, usually represented by a second-quantized
Hamiltonian in terms of boson operators ai, a

+
i and ni = a+

i ai with standard commutators[
am, a+

i

] = δmi , exhibit a dramatic complexity owing to their many-body nonlinear character.
A combination of the CS method with the application of standard variational schemes allows
one to circumvent this problem by reformulating model Hamiltonians into a mean-field (MF)

picture [6, 12] in which the Schrödinger problem for variational trial states |�〉 = |φ1, φ2 . . .〉
describing the system quantum state is reduced to a set of Hamilton equations governing the
evolution of parameters φj . A very standard choice [13] is |�〉 ≡ |Z〉 = ∏

i |zi〉 where,
for each mode ai , state |zi〉 is a Glauber coherent-state satisfying the defining equation
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am|zm〉 = zm|zm〉 and φj identify with CS parameters zj = 〈�|aj |�〉. Similar schemes
have been developed for magnetic and multi-level atomic systems [6, 14] where |�〉 is a
product of spin CS. The important feature is that dynamical variables φj are, at the same
time, the expectation values of the Hamiltonian operators, thus are providing information on
microscopic physical processes. Significant examples are found within the physics of ultracold
bosons confined in optical lattices where this MF formulation successfully describes complex
dynamical behaviors [15–25]. There, CS parameters usually represent either on-site superfluid
order parameters of local condensates or expectation values of local operators such as a+

i am

and ni giving informations on space correlations and boson populations, respectively.
The most general version of this MF picture, however, is achieved by using a Gutzwiller-

like [26] trial state |�〉 exhibiting yet a factorized semiclassical form, but involving constituent
states more structured than CS. These are

|F 〉 =
M∏
i=1

|Fi〉 =
M∏
i=1

∞∑
ni=0

f i
ni
|n〉i , (1)

where |Fi〉 has replaced local state |zi〉 in |Z〉, ni |n〉i = n|n〉i and M is the boson-mode
number namely, for many models, the lattice-site number. This choice ensures an improved
description of microscopic processes in the sense that, for each mode, infinitely-many
variational parameters f i

ni
are available now in place of the M parameters zi of |Z〉. The

|F 〉-based approach has been applied in studying the dynamics of the Bose–Hubbard (BH)
model [27, 28] as well as its zero-temperature critical properties [29–32].

Recently, a third variational scheme has been considered in [23, 25] to approach the
dynamics of many-mode boson models, where state |�〉 is assumed to have the form

|N , ξ 〉 = (N !)−1/2(A+)N |0, 0, . . . , 0〉, (2)

where A+ = ∑M
i=1 ξia

+
i , and the constraint

∑M
i=1 |ξi |2 = 1 ensuring its normalization.

Different from states |Z〉 and |F 〉, the distinctive property1 of states |ξ 〉 (N will be often
implied in |N , ξ 〉) is to diagonalize, by construction, the boson-number operator N = ∑

i ni

whose eigenvalue can be easily shown to identify with index N . Hence, states |ξ 〉 having
N as for a good quantum number naturally embody the property [N,H ] = 0 characterizing
usually many-mode boson Hamiltonians H. This valuable feature reflects in turn the even more
interesting fact that states (2) actually coincide with the CS of group SU(M) where eigenvalue
N is the index labeling the representation of SU(M).

The structure of the formula (2), however, appears quite different from the (standard)
group-theoretic form of SU(M) coherent states. The standard definition as given in [1], in
fact, states that |ξ 〉 = g|�〉 with g ∈ SU(M) where |�〉 is an appropriate extremal state. Then
a CS is generated through the exponential action of an algebra element a ∈ su(M) such that
g = exp(ia) where a is in general a linear combination of su(M) generators. A well-known
M boson-mode realization [2] of SU(M) CS is, for example,

g|�〉 = T (ζ )|�〉, |�〉 = |0, . . . ,N , 0, . . .〉
where T (ζ ) = eia is the displacement operator, a = ∑M

� �=m

(
ζ ∗
� a+

ma� + ζ�a
+
� am

)
, ζ� ∈ C, and

n�|�〉 = δ�mN |�〉. Such a definition has been (and is) currently in use in representing quantum
dynamical processes in microscopic systems within Quantum Optics, condensed-matter theory
and Nuclear Physics (see [2, 33] and references therein).

Except for the case M = 2, where states (2) are easily related, as shown in [2], to
the definition of g|�〉 (see appendix A), for M � 3 the connection of formula (2) with the

1 Even if |Z〉 and |F 〉 do not conserve N, this distinctive property is recovered within the mean-field picture where
〈�|N |�〉 with � = Z, F is a constant of motion of the effective Hamiltonian H = 〈�|H |�〉.
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group-theoretic form of SU(M) CS is less direct owing to the difficulty in disentangling the
group element g through the Baker–Campbell–Hausdorff decomposition [2]. As noted in [34],
where this issue has been investigated, even if SU(2) CS has been common in the literature, not
much work has been devoted finding realizations of SU(M) CS which are more practicable for
physical applications. In this respect, definition (2) indeed has proven itself useful by supplying
a useful tool for applications. However, despite states (2) being tacitly presented as CS of
group SU(M) in various papers, their connection with the group-theoretic definition within
the CS theory is far from being evident. We thus devote some attention to this particular
aspect even if it might be known to authors of [34–38] involved in mathematical aspects
of CS.

This paper is aimed at comparing three MF schemes based on states |F 〉, |Z〉 and |ξ 〉,
used widely in applications to boson systems. We highlight some formal aspects concerning
both the implementation of the (time-dependent) variational approach within such schemes
and the representation of trial states in terms of the CS. We emphasize that some parts of our
discussion have a review character, and involve well known theoretical tools. Nevertheless, a
direct comparison among these three MF schemes has never been presented in the literature
to our knowledge. We feel that such a comparison can elucidate their specific properties and
advantages at the operational level prompting as well their applications.

A first objective of this paper is to evidence how the variational schemes based on states
|F 〉 and |Z〉, respectively, are related to each other. In section 2, after reviewing the variational
procedure that amounts to reformulating quantum Hamiltonian models in terms of effective
Hamiltonians and the corresponding dynamical equations, we focus on the formal derivation
of the Hamiltonian picture relevant to |Z〉 from the one based on |F 〉. We show that the Poisson
algebra of variables f

j
n and f̄

�

m is naturally equipped with a (classical) Weyl–Heisenberg sub-
algebra preluding to the |Z〉-based picture. A second objective is to relate SU(M) CS |ξ 〉 to
states |Z〉 and |F 〉. In section 3, following [13], we show that Glauber-like trial state

|Z〉 =
M∏
i=1

|zi〉, |zi〉 = ezia
+
i −z∗

i ai |0〉i = e−|zi |2/2
∞∑

n=0

zn
i√
n!

|n〉i , zi ∈ C

can be expressed as a superposition of SU(M) states |ξ 〉 thus making evident why the dynamical
equations obtained for the |Z〉-based scheme have essentially the same form as those obtained
for the |ξ 〉-based scheme. To illustrate this situation we derive the MF dynamics relevant to
the BH model showing (see appendix D) how the use of the form (2) in place of the standard
SU(M) CS definition is extremely advantageous. In this section we also display an explicit
way to relate state (2) with the standard form |ξ 〉 = g|�〉 of the CS theory involving one from
M possible (equivalent) choices of extremal vector |�〉 and the relevant maximal isotropy
algebra. Finally, in section 4, we discuss the property of ‘duality’ inherent in space-like states
|Z〉 and |ξ 〉 defined in terms of ambient-lattice operators a+

i showing how they can easily be
rewritten as momentum-like states involving momentum modes b+

k . We exploit this property
to construct Schrödinger cat states in terms of states |ξ 〉 and show that they exhibit specific
momentum features.

2. Mean-field approaches based on states |F 〉 and |Z〉

In order to compare the |Z〉-based approach with the |F 〉-based approach we refer to the
MF dynamical equations stemmed from such schemes for the well-known Bose–Hubbard
Hamiltonian [6–10]. Optical-lattice confinement shows that real boson lattice systems are

3
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effectively described within the Bose–Hubbard picture. The corresponding Hamiltonian [39],
defined on an M-site lattice, is

H = U

2

∑
j

(
n2

j − nj

) −
∑
〈j�〉

Tj�a
+
j a� (3)

where ni = a+
i ai (i = 1, . . . ,M) and ai, a

+
i obey the standard commutators

[
am, a+

i

] = δmi .
In the hopping term

∑
〈j�〉 ≡ 1

2

∑
j

∑
�∈j , where � labels the nearest neighbor sites of j , and

Tj� = T�j . This model well represents the boson tunneling among the potential wells forming
d-dimensional arrays (d = 1, 2, 3) through the hopping amplitude Tj�, and takes into account
boson–boson interactions by means of parameter U. For one-dimensional homogeneous arrays
the hopping term reduces to T �j

(
a+

j+1aj + aj+1a
+
j

)
.

The MF dynamics relevant to trial state (1) is easily derived. State |F 〉 = 	i |Fi〉, where
|Fi〉 = ∑

n f i
n |n〉i and |n〉i is such that a+

i |n〉i = √
1 + n|n+1〉i , ai |n〉i = √

n|n−1〉i , obeys the

normalization condition 〈F |F 〉 = 	i

[∑
n

∣∣f i
n

∣∣2] = 1. The application of the time-dependent
variational principle [2, 6] amounts to deriving dynamical equation for parameters f i

n by
stationarizing the weak form of Schrödinger equation 〈
|S|
〉 = 0 where S := ih̄∂t − H .
In order to illustrate this procedure, we write explicitly the expectation value of microscopic
physical operators appearing in H. These are

αi = 〈F |ai |F 〉 =
∑
m

√
m〈Fi |f i

m|m − 1〉 =
∑
m

√
m + 1f̄

i

mf i
m+1, (4)

〈F |aia
+
j |F 〉 = 〈Fi |ai |Fi〉〈Fj |a+

j |Fj 〉 = αiα
∗
j , and 〈F |(ni)

s |F 〉 = ∑
n ns |f i

n |2 where the
exponent s is an integer. To calculate 〈
|∂t |
〉 and H = 〈
|H |
〉 in 〈
|S|
〉 we standardly
set |
〉 = eiA|F 〉, the phase A representing the effective action within the variational procedure.
The first quantity becomes 〈
|∂t |
〉 = iȦ + 〈F |∂t |F 〉 with

〈F |∂t |F 〉 =
∑

j

∑
n

f̄
j

nḟ
j
n = 1

2

∑
j

∑
n

[
f̄ j

n

df
j
n

dt
− df̄

j
n

dt
f j

n

]
+

d

dt

∑
j

∑
n

∣∣f j
n

∣∣2

while H = 〈F |H |F 〉 reads

H = U

2

∑
j

(∑
n

(n2 − n)
∣∣f j

n

∣∣2

)
−

∑
〈�j〉

T�jα�α
∗
j (5)

From the action A = ∫
L dt = ∫

dt[ih̄〈F |∂t |F 〉 − H] (where the second term of 〈F |∂t |F 〉, a
total time-derivative, can be eliminated) one obtains the Lagrange equations

∂

∂t

dL

d ˙̄
f i

m

− dL

df̄
i

m

= 0,
∂

∂t

dL

dḟ i
m

− dL

df i
m

= 0,

(
df i

m

/
dt = ḟ i

m

)
that can equivalently be written as (we set h̄ = 1)

−iḟ i
m +

∂H
∂f̄

i

m

= 0, i ˙̄
f i

m +
∂H
∂f i

m

= 0. (6)

By defining the Poisson brackets

{A,B} = −i
∑

n

∑
j

[
∂A

∂f
j
n

∂B

∂f̄
j

n

− ∂B

∂f
j
n

∂A

∂f̄
j

n

]
(7)

equations (6) can be formulated within the standard Hamiltonian formalism as df i
m

/
dt ={

f i
m,H

}
and df̄ i

m

/
dt = {

f̄
i

m,H
}
. The resulting MF dynamical equations are

iḟ i
m = U

2
(m2 − m)f i

m −
√

m + 1f i
m+1�

∗
i − √

mf i
m−1�i, (8)

4
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(equations for f̄
i

m are obtained from the latter by complex-conjugation), where

�∗
i =

∑
j∈i

Tijα
∗
j , �i =

∑
�∈i

T�iα�,

and, in addition to definition (4), one has α∗
i = ∑∞

m=0

√
mf̄

i

mf i
m−1. Concluding, we recall

that within the |F 〉-based scheme the average total particle number N = 〈F |N |F 〉 =∑
i〈F |ni |F 〉 = ∑

i

∑
n n

∣∣f n
i

∣∣2
should be a constant of motion of Hamiltonian (5). The

validity of this property is verified in appendix C. In addition to N , other M motion constants
can be shown to be represented by Ii = ∑

n

∣∣f n
i

∣∣2 = 〈Fi |Fi〉. These allows one to implement
the local-state normalization condition 〈Fi |Fi〉 = 1.

2.1. Connection with the Glauber-like trial state scenario

A simple assumption allows one to recover state |Z〉 from |F 〉 and relate the corresponding
variational schemes. This is

f i
m = e−|zi |2/2zm

i

/√
m! (9)

entailing
∑∞

n=0 f i
n |n〉i = e−|zi |2/2 ∑∞

n=0

(
a+

i

)n|0〉i/n! and therefore

|F 〉 =
M∏
i=1

∞∑
n=0

f i
n |n〉i =

M∏
i=1

ezia
+
i −z∗

i ai |0〉i =
M∏
i=1

|zi〉 = |Z〉, (10)

where the defining formula of the Glauber CS |z〉 = eza+−z∗a|0〉 = e−|z|2/2 eza+ |0〉 has been used
for each space mode together with the Baker–Campbell–Hardwork decomposition formula
[1]. The same assumption enables one to find a new form of parameter (4),

αj =
∞∑

m=0

√
m + 1f̄

j

mf
j

m+1 = e−|zj |2
∞∑

m=0

zj

|zj |2m

m!
= zj , (11)

showing that αj reduces to Glauber CS parameters zj , and formulas 〈F |aia
+
j |F 〉 =

ziz
∗
j , 〈F |ni |F 〉 = |zi |2 and 〈F |n2

i |F 〉 = |zi |4 + |zi |2. In order to recover the MF equations
inherent in the |Z〉-based picture we consider the time-derivative of αj . This is given by

iα̇j = ∑∞
m=0

√
m + 1

[
if j

m+1 df̄
j

m

/
dt +if̄ j

m df i
m+1

/
dt

]
, which reduces to (a detailed calculation

is carried out in appendix B)

i
dαj

dt
=

∞∑
m=0

[
Um

√
m + 1f̄

j

mf
j

m+1

] − �j . (12)

Note that, as illustrated in appendix B, no explicit assumption on the form of f
j
m has

been requested so far (except for 〈Fj |Fj 〉 = 1) in getting (12). At this point, however,

the use of formula (9) in (12) becomes necessary. We find
∑∞

m=0 Um
√

m + 1f̄
j

mf
j

m+1 =
Uzj

∑∞
m=0 mf̄

j

mf
j
m = Uzj |zj |2 which leads, in turn, to the well-known final equations

iżj = Uzj |zj |2 −
∑
�∈j

T�j z�, (13)

describing a set of discrete nonlinear Schröndinger equations [40], namely the MF dynamical
equations associated with the Bose–Hubbard model within the Glauber-like variational picture
[6]. Equations (13) can be issued from the new Hamiltonian

H = U

2

∑
i

|zi |4 −
∑
〈j�〉

Tj�zj z
∗
� (14)

5
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obtained by rewriting formula (5) in terms of zj , and defining the new Poisson brackets (PB)

{A,B} = −i
∑

�

[
∂A

∂z�

∂B

∂z̄�

− ∂B

∂z�

∂A

∂z̄�

]
⇔ {zj , z

∗
�} = −iδj�. (15)

The crucial point that explains and justifies the whole reduction of the Hamiltonian picture
based variables f i

n, f̄
�

m to the one involving a restricted set of variables zi, z̄� thus consists in
showing that PB of (15) are consistent with PB of (7). In particular, αi, α

∗
� must be shown to

exhibit, within algebra (7), the same algebraic structure of variables zj , z∗
� . By setting A = αi

and B = α∗
� in PB (7) one discovers that

{αj , α
∗
� } =

∑
m

∑
n

√
m + 1

√
n + 1

{
f̄

j

mf
j

m+1, f
�
n f̄ �

n+1

}
= −iδj�

∑
m

(m + 1)
(∣∣f j

m

∣∣2 − ∣∣f j

m+1

∣∣2) = −iδj�

∑
m

∣∣f j
m

∣∣2 = −iδj� (16)

due to normalization 〈Fi |Fi〉 = 1. Also, one easily proves that {αj ,N�} = −iδj�αj , where

N� = 〈F |n�|F 〉 = ∑
n n

∣∣f �
n

∣∣2
. Hence, it is an intrinsic feature of algebra (7) characterized by{

f
j
n , f̄

�

m

} = −iδj�δnm the property that αi, α
∗
� form a (classical) Weyl–Heisenberg sub-algebra

of algebra (7). Noticeably, the latter represents the classical counterpart of the original boson
algebra [aj , n�] = δj�aj ,

[
aj , a

+
�

] = δj� characterizing Hamiltonian (3). Then identities

αj ≡ zj and α∗
� ≡ z∗

� , obtained by assuming f
j
m as a function of zj (see formula (11)), quite

naturally entail that zj and z∗
� obey the canonical brackets given in (15) within the Glauber-

like scheme. This completes the proof that the |Z〉-based variational picture is consistently
contained within that based on the more structured state |F 〉.

Concluding, we note that if an effective Hamiltonian H depending on f i
n, f̄

�

m can
be rewritten in terms of collective variables αj , α

∗
� then sub-algebra (16) is sufficient for

determining the evolution of the system, and the |F 〉-based picture becomes redundant. This
is not the case of Hamiltonian (5) where, owing to the presence of the nonlinear U-dependent
term, algebra (7) is necessary to derive the relevant motion equations.

Comparing equations (8) and (13) fully evidences how a more pronounced quantum
character of the |F 〉-based picture involves a dynamical scenario of greater complexity. The
marked semiclassical character of the |Z〉-based picture instead appears when comparing
quantum model (3) with Hamiltonian (14). The latter, in fact, is essentially obtained
from (3) through substitutions, ai → zi and a+

i → z̄i , namely by implementing the
Bogoliubov approximation. At a formal level, the |Z〉-based scheme thus provides an effective,
dynamically-consistent formulation of the Bogoliubov semiclassical picture.

3. Mean-field approach based on state |ξ〉
A quite significant form of state |Z〉 given by (10) is achieved with a simple calculation

|Z〉 =
M∏
i=1

|zi〉 = e− 1
2

∑
i |zi |2

M∏
i=1

ezia
+
i |0〉i

= e− ∑
i |zi |2/2 e

∑
i zia

+
i |0〉i = e− 1

2

∑
i |zi |2

∞∑
S=0

1

S!

(∑
i

zia
+
i

)S

|0, 0 . . . 0〉

= e−N /2
∞∑

S=0

N S
2√

S!
|S; ξ 〉,

6
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where 	M
i=1|0〉i = |0, 0, . . . , 0〉, ξi = zi/

√
N , and |S; ξ 〉 corresponds to state |ξ 〉 defined by

(2) where the group-representation index S has been evidenced. State |S; ξ 〉 is characterized by
〈ξ ; S|N |S; ξ 〉 = S and the orthogonality property 〈ζ ; S ′|S; ξ 〉 = δSS ′ . The final version of |Z〉
derives from the observation that 〈Z|N |Z〉 = ∑

i |zi |2 = N is the average total boson number
in |Z〉-based scheme and that ξi = zi/

√
N is consistent with the normalization condition∑

i |ξi |2 = 1 of SU(M) coherent states. The latter follows from the scalar-product formula of
two CS states |ξ 〉 and |η〉 given by 〈η|ξ 〉 = (�iη

∗
i ξi)

S .
The new information about |Z〉 is therefore that states |S; ξ 〉 are its constitutive elements.

In particular, state (2) features the property of incorporating only contributions of Fock states
pertaining to the S-particle sectors of the Hilbert space. This becomes quite evident from
rewriting |S; ξ 〉 as

|S; ξ 〉 = 1√
S!

(∑
i

ξia
+
i

)S

|0〉 =
(S)∑
�m

√
S!√∏

i (mi!)
ξ

m1
1 . . . ξ

mM

M | �m〉 (17)

where, |0〉 = |0, 0 . . . 0〉, and superscript (S) recalls that S = ∑
i mi and | �m〉 is such that

| �m〉 = |m1, . . . , mM〉 =
(S)∏
i

(
a+

i

)mi

√
mi!

|0, 0 . . . 0〉 ⇒ N | �m〉 =
∑

i

mi | �m〉 = S| �m〉.

The previous formulas allow one to evaluate the weight of state |L; ζ 〉 in |Z〉

〈ζ ;L|Z〉 = e−N /2
∞∑

S=0

N S/2

√
S!

〈ζ ;L|S; ξ 〉 = e− N
2
N L

2√
L!

(∑
i

ζ ∗
i ξi

)L

.

Upon setting ζ = ξ , the normalization condition
∑

i |ξi |2 = 1 entails that 〈ζ ;L|Z〉 =
e−N /2NL/2/

√
L! whose maximum value is reached for L ≡ N (N is assumed to be integer).

Considering |L; ξ 〉 with L = N ± p and p � L, one easily finds that the state-weight
distribution around the maximum-weight state |N ; ξ 〉 is not sharp.

The variational procedure reviewed in section 2 can once more be applied to the BH
model 3 assuming |
〉 = eiA|ξ 〉 as the trial state. The weak form of Schrödinger equation
〈
|(ih̄∂t − H)|
〉 = 0 provides action A = ∫

dtL(ξ) where the effective Lagrangian
L(ξ) = ih̄〈ξ |∂t |ξ 〉− 〈ξ |H |ξ 〉 supplies the dynamical equations of variable ξi . The calculation
for both 〈ξ |∂t |ξ 〉 and H(ξ) = 〈ξ |H |ξ 〉 has been carried out in appendix D together with the
basic formulas required to achieve these results. We find, in particular, that the average local
boson number is 〈ξ |ni |ξ 〉 = N |ξj |2, giving consistently 〈ξ |N |ξ 〉 = N

∑
i |ξj |2 = N . This

suggests to define variable ψj = √
Nξj (formally coinciding with zj ) for a better comparison

between the present MF dynamics and the one issued from trial state |Z〉. Explicitly, one
finds 〈ξ |∂t |ξ 〉 = N

∑
j ξ̇j ξ

∗
j = ∑

j ψ̇jψ
∗
j and

H(ξ) = 〈ξ |H |ξ 〉 = U(N − 1)

2N
∑

j

|ψj |4 −
∑
〈j�〉

Tj�ψ
∗
j ψ�

while the dynamics is found to be governed by

i
dψj

dt
= U

(N − 1)

N
|ψj |2ψj −

∑
j∈�

Tj�ψ�. (18)

Equations (18) can be interpreted as the projection of equations (13) on a given S-particle
Hilbert-space sector. In order to prove this property one must consider the variational scheme
based on a generic state |ψ〉 = ∑

S CS |S; ξ 〉. The latter reproduces state |Z〉 when condition
CS = (S!)−1/2 e−N /2N S/2 is imposed. The |ψ〉-based scheme would involve, in this case,

7
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the effective Lagrangian L = ih̄〈ψ |∂t |ψ〉 − 〈ψ |H |ψ〉 which, in the case |ψ〉 = |Z〉, leads to
equations (13). Observing that 〈ξ ;R|S; ξ 〉 = δRS , then

〈ψ |X|ψ〉 =
∑
R

∑
S

CRCS〈ξ ;R|X|S; ξ 〉 =
∑

S

C2
S〈ξ ; S|X|S; ξ 〉,

for both X = H and X = ∂t0, states ∂t |S; ξ 〉 and H |S; ξ 〉 pertaining to the S-particle sector.
Hence, L reduces to a summation L = ∑

S C2
SLS(ξ) over independent S-particle Lagrangians

LS(ξ) = 〈ξ ; S|[ih̄∂t − H ]|S; ξ 〉, the case S = N giving equations (18).
Formally, no significant difference therefore distinguishes equations (18) (and the relevant

generating Hamiltonian) from the picture corresponding to equations (13) if (N − 1)/N → 1
namely for boson number N sufficiently large. A profound difference instead concerns
the role of variables zi and ψi in the relevant schemes. While zi = 〈Z|ai |Z〉 relates ai

to the local superfluid parameter zi , its counterpart in the |ξ 〉-based scheme has no explicit
physical meaning since 〈ξ |ai |ξ 〉 = 0. State ai |ξ 〉 belongs in fact to the (N − 1)-particle
Hilbert-space sector thus resulting orthogonal to the N -particle state |ξ 〉. With state |Z〉 this
effect is avoided since |Z〉 is spread on the whole Hilbert space. The equivalence between
the two schemes is restored in the case of two-particle operator ziz

∗
j = 〈Z|aia

+
j |Z〉 being

comparable with ψiψ
∗
j = N ξiξ

∗
j = 〈ξ |aia

+
j |ξ 〉. Of course case i = j describing local

populations 〈�|ni |�〉,� = Z, ξ is also included. Variables ψj = |ψj |eiθj thus acquire a
physical meaning in terms of local populations 〈ξ |ni |ξ 〉 = |ψi |2. The relevant phases θj have
no role unless one considers expectation values of operators aia

+
j involving phase differences

θi − θj .

3.1. Group-theoretic form of state |ξ 〉
State (2) displays the particularly nice property of possessing a fully symmetric structure
mirroring the fact that all modes am play an equal important role in defining |ξ 〉. This
symmetry must be ‘broken’ for proving that state (2) has the standard group-theoretic CS form
where |ξ 〉 is generated by a group action on an extremal state (the choice of the latter entails
the loss of the symmetric form). To show this our first step consists in proving that formula
(2) can be rewritten as

|ξ 〉 = (N !)−1/2(A+)N |0, 0, . . . , 0〉 = (N !)−1/2E
(
a+

1

)N
E+|0, 0, . . . , 0〉 (19)

where E+ = E−1 and E is an element of SU(M) whose parameterization in terms of variables
ξi can easily be determined. The action of a+

i on the zero-boson Fock state |0〉 := |0, 0, . . . , 0〉
is the standard one

(
a+

i

)p|0, 0, . . . , 0〉 = √
ni!| . . . , 0, ni, . . .〉 with ni = p while ai |0〉 = 0.

We point out that the choice of generating A+ from a+
m rather than a+

1 is equally possible
and simply entails choosing, in turn, one from M possible parameterizations for |ξ 〉 and the
relevant form of E. This arbitrariness reflects the just mentioned symmetry of formula (2). For
proving (19) we show that Ea+

1 E+ = A+ where E = eiSeiD is defined as

S =
M∑
i=1

φini, D =
M∑
i=2

θi

(
a+

1 ai + a+
i a1

)
, (D+ = D)

with φi ∈ R and θi ∈ R. Upon setting
∑M

k=2 θ2
k := θ2, standard calculations show that

eiDa+
1 e−iD = ∑M

j=1 yja
+
j (see appendix E) with y1 = cos θ and yk = iθksin θ/θ if k �= 1. A

further action of eiS gives

eiS eiDa+
1 e−iD e−iS =

M∑
j=1

yj eiφj a+
j =

M∑
j=1

ξja
+
j = A+, (20)

8
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where, ξ1 = eiφ1 cos θ, ξk = iθk eiφk sin θ/θ , and the action of factor eiφini in eiS = 	i eiφini is
described by eiφ�n�a+

� e−iφ�n� = eiφ�a+
� . The identification A+ = Ea+

1 E+ suggested by formula
(20) is confirmed by the fact that the correct normalization of A+ components ξj follows
from

∑M
j=1 |ξj |2 = cos2 θ +

∑M
k=2

(
θ2
k

/
θ2

)
sin2 θ = 1. Since a+

mai |0〉 = ni |0〉 = 0 and thus
S|0〉 = D|0〉 = 0, formula (19) becomes

|ξ 〉 = (N !)−1/2E
(
a+

1

)N
E+|0〉 = (N !)−1/2E

(
a+

1

)N |0〉 = E|N , 0, . . . , 0〉,
being E+|0〉 = e−iD e−iS |0〉 = |0〉 and

(
a+

1

)N |0〉 = √
N !|N , 0, . . .〉. Upon observing that

E = eiSeiD = exp[eiSiD e−iS] eiS state |ξ 〉 can be rewritten as

|ξ 〉 = eiφ1N exp[eiSiD e−iS]|N , 0, . . . , 0〉 = eiφ1NT (ζ )|N , 0, . . . , 0〉,
where eiSa+

� a1 e−iS = ei(φ�−φ1)a+
� a1 entails that

eiSD e−iS =
M∑

�=2

(
ζ ∗
� a+

1 a� + ζ�a
+
� a1

)
, T (ζ ) := ei

∑M
�=2(ζ

∗
� a+

1 a�+ζ�a
+
� a1),

with ζ� = θ� ei(φ�−φ1), � = 2, 3, . . . , M . Summarizing, we have found that

|ξ 〉 = 1√
N !

(A+)N |0, 0, . . . , 0〉 = eiφ1NT (ζ )|N , 0, . . . , 0〉, (21)

where T (ζ ) is an element of group SU(M), which proves that state (2), up to an irrelevant
phase factor, is generated by the group action of T (ζ ). The identification of T (ζ ) with
an element of SU(M) is discussed in appendix F. By setting φ1 = 0, the relation between
ξi and ζ� is described by ξ� = ζ� sin θ/θ whereas ξ1 is fixed by |ξ1|2 = 1 − ∑M

�=2 |ξ�|2.
An initial choice of A+ = Ea+

mE+ in formula (19) would have entailed T (ζ ) generated by∑M
� �=m

(
ζ ∗
� a+

ma� + ζ�a
+
� am

)
and the extremal state |0, . . .N , . . .〉 = (N !)−1/2

(
a+

m

)N |0〉.
As a final step, we prove that formula (21) is consistent with the group-theoretic definition

of CS based on the notion of maximal isotropy subalgebra (MIS). Within the CS theory [1]
a class of CS is derived by identifying the (complex) MIS B of G = su(M) and the related
extremal vector |ψ0〉. The defining formula for |ψ0〉 states that a|ψ0〉 = λa|ψ0〉, λa ∈ C,
∀a ∈ G0 where B ∩ G := G0. The (complex) MIS naturally related to formula (21) is given by

B = {hk, a
+
1 ak, a

+
� ak(k �= �) : k, � ∈ [2,M]}, ([B,B] ⊆ B)

whose generators are such that a+
1 ak|N , 0, . . . , 0〉 = a+

� ak|N , 0, . . . , 0〉 = 0 and generators
hk form the Cartan (abelian) subalgebra. The vector satisfying the defining formula for |ψ0〉 is
thus |N , 0, . . . , 0〉. According to the MIS scheme, coherent states are generated by the action
on |ψ0〉 of the elements of the quotient group Gc/B where Gc = expG and B = expB. The
algebra that generates Gc/B is in our case

{
a+

k a1 : k ∈ [2,M]
}
, which entails that a coherent

state, up to a normalization factor λ, has the form

λ e
∑

k ηka
+
k a1 |N , 0, . . . , 0〉, e

∑
k ηka

+
k a1 ∈ Gc/B. (22)

State (21) precisely has this form. In order to check this property, one can observe that
T (ζ ) = exp

[
i
∑M

k=2

(
ζ ∗
k a+

1 ak + ζka
+
k a1

)] = eiθ(a+
1 D+D+a1), with D = ∑M

k=2 ζ ∗
k ak/θ where

[D,D+] =
M∑

k=2

M∑
�=2

ζ ∗
k ζ�

θ2

[
ak, a

+
�

] =
M∑

k=2

|ζk|2
θ2

= 1.

The exponent of T (ζ ) can thus be viewed as an element of su(2) in the two-boson (Schwinger)
realization with generators J− = a+

1 D, J+ = a1D
+, J3 = (

D+D − a+
1 a1

)/
2 and commutators

[J3, J±] = ±J± and [J+, J−] = 2J3. This information allows us to apply the standard
decomposition formula evJ+−v∗J− = euJ+ eln(1+|u|2) e−u∗J− for the SU(2) elements [1] where

9



J. Phys. A: Math. Theor. 41 (2008) 175301 P Buonsante and V Penna

v, u ∈ C, v = |v| eiψ, u = |u| eiψ and |u| = tg|v|. Setting v = iθ , which entails u = itgθ ,
one has T (ζ ) = eiθ(D+

1 B+D+a1) = eiθ(J−+J+) thus obtaining

T (ζ )|N , 0, . . . , 0〉 = euJ+

(1 + |u|2)N |N , 0, . . . , 0〉 = e
∑M

k=2 ηka
+
k a1

(1 + |u|2)N |N , 0, . . . , 0〉

where ηk = uζk/θ = i eiθk tgθ , and J3|N , 0, . . . , 0〉 = (N /2)|N , 0, . . . , 0〉 has been used
together with J−|N , 0, . . . , 0〉 = a+

1 D|N , 0, . . . , 0〉 = 0. Therefore state (21) indeed can be
cast into the CS form (22) determined within the theory of CS.

4. The duality property of states |Z〉 and |ξ〉
Both states |Z〉 and |ξ 〉, whose definition involves boson operators aj and a+

j of the ambient
lattice, can be shown exhibiting a dual character which becomes evident when space-like
operators are expressed as momentum-like operators through Fourier formulas

bq =
M∑

j=1

e−iq̃j

√
M

aj , aj =
M∑

j=1

eiq̃j

√
M

bq, q̃ := 2πq/M, q ∈ [1,M] (23)

where
[
aj , a

+
�

] = δj� implies that
[
bq, b

+
p

] = δqp. Note that we assume periodic boundary
conditions (namely the lattice is a closed ring) so that displacements q → q + sM and
j → j + rM (r and s are integer) leave operators aj and bq unchanged respectively. This
condition, standardly assumed to simplify theoretical models, becomes necessary in real
lattices with a ring geometry [41]. Concerning state |Z〉 = ∏

j |zj 〉 simple calculations yield

|Z〉 = e− 1
2

∑
j |zj |2 e

∑
j zj a

+
j |0〉 = e− 1

2

∑
k |vk |2 e

∑
k vkb

+
k |0〉 =

∏
k

|vk〉 = |V 〉 (24)

where a�|0〉 = 0 = bk|0〉 has been used (recall that |0〉 = |0, 0, . . . , 0〉) and, thanks to
definitions (23), one has vk = ∑M

j=1 e−iq̃j zj /
√

M , and zj = ∑M
j=1 eiq̃j vq/

√
M . Trial

states |Z〉 are thus equivalent to states |V 〉 formed by momentum-like Glauber CS |vk〉 =
evkb

+
k −v∗

k bk |0〉k . Similarly, states |ξ 〉 transform into momentum-like SU(M) CS

|N , ξ 〉 = (A+)N√
N !

|0〉 = (B+)N√
N !

|0〉 = |N , α〉, ξj =
M∑

k=1

eik̃j

√
M

αk (25)

where the latter definition ensures B+ = ∑M
k=1 αkb

+
k ≡ ∑M

j=1 ξja
+
j = A+. Also, the

counterpart of formula (17) in the momentum picture is easily derived

|N ;α〉 =
(N )∑
�p

C�p(N )α
p1
1 . . . α

pM

M |�p〉,

where C�p(N ) := [
N !/

∏
k pk!

]1/2
while |�p〉 = [∏

k pk!
]−1/2 ∏

k

(
b+

k

)pk |0〉 are momentum
Fock states. While space-like states |Z〉 and |ξ 〉 provide information on the local boson
population by means of 〈Z|a+

i ai |Z〉 = |zi |2 and 〈ξ |a+
i ai |ξ 〉 = N |ξi |2, respectively,

momentum-like states |V 〉 and |α〉 provide information on the k-mode boson population
by means of 〈V |b+

k bk|V 〉 = |vk|2 and 〈α|b+
k bk|α〉 = N |αk|2, respectively. The total boson

number N is unchanged being 〈Z|N |Z〉 = 〈V |N |V 〉 and 〈ξ |N |ξ 〉 = 〈α|N |α〉.
As an application of the duality property of |ξ 〉, we show that states |Sk〉, describing

Schrödinger cats, can be defined having specific momentum properties. To this end an
important preliminary condition consists in showing thatN -boson states |ξ(�)〉 with � ∈ [1,M]

10
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can be exploited quite easily to form sets of M orthogonal states. Recalling that the scalar
product of two SU(M) CS is given by 〈η|ξ 〉 = (∑

j η∗
j ξj

)N
, one has

〈ξ(h)|ξ(�)〉 =
⎛
⎝∑

j

ξ ∗
j (h)ξj (�)

⎞
⎠

N

= δh� ⇔
∑

j

ξ ∗
j (h)ξj (�) = δh�

which shows how the desired orthogonality directly ensues from the orthogonality of complex
vectors �ξ(�) = (ξ2(�), ξ2(�), . . .) with � ∈ [1,M]. For fully localized states |ξ(�)〉
characterized by ξj (�) ≡ δj�, the orthogonality condition 〈ξ(h)|ξ(�)〉 = δh� is manifest.
In the general case, however, the condition

∑
j ξ ∗

j (h)ξj (�) = δh� with |ξ�(�)| � |ξj (�)| can
be achieved by exploiting the arbitrariness of the phases of ξj (�). States |ξ(�)〉 describing
strong boson localization have been employed for realizing Schrödiger-cat states |Sk〉 in a
ring of attractive bosons [25]. These were proven to well approximate the low-energy states
including the ground state in the regime of strong interaction. Following the recipe given in
[25] we define |Sk〉 as a superposition of equal-weight localized states

|Sk〉 =
M∑

�=1

eik̃�

√
M

|ξ(�)〉, |ξ�(�)| � |ξj (�)|, j �= �.

As a consequence of the orthogonality of states |ξ(�)〉, states |Sk〉 appear themselves to be
orthogonal namely 〈Sq |Sk〉 = δqk . We observe that, if 〈ξ(�)|ni |ξ(�)〉 = N |ξi(�)|2 � N δi�

evidences the information about boson localization at the � th site, the expectation value

〈Sk|ni |Sk〉 =
M∑

h=1

M∑
�=1

ei(k̃�−q̃h)

M
〈ξ(h)|ni |ξ(�)〉 = N

M
, ∀i,

obtained through the properties 〈η|a+
mai |ξ 〉 = Nη∗

mξi〈η|ξ 〉1−1/N and 〈ξ(h)|ξ(�)〉 = δh�

confirms the expected feature of full delocalization typical of Schrödinger states. We note how
the possibility of constructing a set of orthogonal trial states is quite important for applications
to boson lattice systems such as model (3). While trial states can be used for approximating in
a reliable way sets of energy eigenstates, the possibility of making them mutually orthogonal
certainly enriches the approximation with an important feature.

In order to show that states |Sk〉 have specific momentum properties we rewrite |ξ(�)〉 in its
dual form α(�)〉. Thanks to formula (25) |ξ(�)〉 = |α(�)〉 with αk(�) = ∑M

j=1 e−ik̃j ξj (�)/
√

M ,
one obtains 〈�p|ξ(�)〉 = 〈�p|α(�)〉 = C�p(N )α

p1
1 . . . α

pM

M giving

〈�p|Sq〉 = 1√
M

∑
�

ei�q̃〈�p|ξ(�)〉 = 1√
M

∑
�

ei�q̃C�p(N )α
p1
1 (�) . . . α

pM

M (�).

In case of strong localization condition |ξ�(�)| � 1 � |ξj (�)| leads to the approximation
αk(�) � e−ik̃�/

√
M and, in particular, to

〈�p|Sq〉 � 1√
M

∑
�

ei�q̃C�p(N )
e−i�

∑
k pk k̃

M
∑

k pk/2
=

√
N !

M(N+1)/2
e− 1

2

∑
k ln(pk !)

∑
�

ei 2π�
M [q−λ(�p)]

where C�p(N ) := [
N !

/∏
k pk!

]1/2
and λ(�p) = ∑

k kpk = 0, 1, 2, . . . mod(M). The latter
represents the eigenvalue of the total quasi-momentum operator P = σ

∑
k kb+

k bk with
σ = 2π/M such that P |�p〉 = σλ(�p)|�p〉. It is worth recalling that, in the discrete geometry of
ring lattices, the quasi-momentum properties are described through the displacement operator
D = exp[−iσP ], whose action is displayed by Da�D

+ = a�+1 and DbkD
+ = bk eikσ .

Based on equation D|�p〉 = e−iσλ(�p)|�p〉 Fock states can be organized in M equivalence classes

11
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labelled by λ(�p). Index q in |Sq〉 therefore characterizes the quasi-momentum associated with
|Sq〉 since the term

∑
� exp[i�[q̃ − λ(�p)]] in 〈�p|Sq〉 vanishes whenever |�p〉 has a momentum

λ(�p) �= qmod(M). States |Sq〉, in the presence of strong localization, supply a set of M
orthogonal states whose label q bears information on the class with quasi-momentum λ

maximally involved in the realization of |Sq〉, within the N -particle Hilbert space. As for
Glauber-like states, we note that 〈X|Z〉 = ∏

j 〈xj |zj 〉 = ∏
j exp[x̄j zj − (|zj |2 + |xj |2)/2] so

that |Z〉 and |X〉 cannot be orthogonal. At most, M quasi-orthogonal states can be obtained
by considering sets {xj (�)} such that |xj (�)|2 � N δj� for which |〈X(h)|X(�)〉| � e−N .
Representation of Schrödinger-cat states in terms of quasi-orthogonal states |Z〉 can be
developed under these conditions.

5. Conclusions

In this paper we have compared variational schemes based on trial states |F 〉, |Z〉 and |ξ 〉, used
widely in applications to many-mode boson systems. To illustrate their distinctive features
we have applied such schemes to the BH model which has become, in the recent years, the
paradigm of real interacting-boson lattice systems. Such a comparison has been aimed at
evidencing the specific characters of each scheme to favor their applications in the study of
the properties of many-mode boson systems.

In section 2, we have applied the |F 〉-based scheme to the BH model showing, within the
corresponding dynamical scenario, that collective variables αi, α

∗
i form a (classical) Weyl–

Heisenberg sub-algebra in the Poisson algebra of variables f
j
n , f̄

�

m. This crucial property
allows reduction of the |F 〉-based picture, exhibiting a more pronounced quantum character,
to the |Z〉-based picture based on Glauber’s CS. The semiclassical character of the latter
appears to be an effective, dynamically-consistent procedure incorporating the Bogoliubov
approximation.

In section 3, we have shown that Glauber-like trial state |Z〉 is a superposition of SU(M)
CS |N , ξ 〉 that involves all the N -particle sectors of the Hilbert space. We have exploited this
property to explain why the dynamical equations relevant to the BH model obtained in the
|N , ξ 〉-based scheme coincide with the equations derived in |Z〉-based scheme. The meaning
of microscopic CS parameters for such schemes has been illustrated and related to the fact that
states |N , ξ 〉 are boson-number preserving. Also, in section 3, we have discussed explicitly
the procedure of enabling one to recast state (2) into the standard form |ξ 〉 = g|�〉 of CS
theory involving the extremal vector |�〉.

Section 4 has been devoted to discuss the duality property of space-like states |Z〉 and |ξ 〉
which allows one to rewrite them as momentum-like states involving modes b+

k . This property
has been used for constructing Schrödinger-cat states with specific momentum features for
bosons in ring lattices. In general, the use of states |ξ 〉 and the possibility of constructing a set
of orthogonal states outlined in section 4 should allow a better characterization of low-energy
regimes in systems of bosons confined in ring lattices whose standard description is given in
terms of Hamiltonian (3). Particularly, the duality property of states |Z〉 and |ξ 〉 finds a natural
application in the study of supercurrents and vortex states occurring in such systems [22, 23].

As observed in section 1, while the |Z〉-based scheme has extensively been used in
applications, the interest for the |ξ 〉 and |F 〉-based schemes is more recent. The more
pronounced quantum character of the |F 〉-based scheme is expected to supply, for the
applications to BH-like models, a better description of the critical behaviors [29–32] inherent
in quantum phase transitions. For the same reason it should also supply an effective tool in
studying the complex dynamics [27, 28] of bosons in lattice systems. Bosons distributed in
small arrays (and thus involving small number M of space modes) are specially interesting
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since they can switch from fully quantum to intermediate semiclassical behaviors by adjusting
just model parameters [23–25]. The corresponding small number of components |Fi〉 in |F 〉
makes it feasible for performing numerical simulations of equations (8). These aspects will
be investigated in a separate paper [42].

Appendix A. Application of formula (2) to the case M = 2

It is quite easy to show that formula (2) with M = 2 reproduces the standard group-theoretic
definition of SU(2) coherent state. In this case A+ = ξ1a

+
1 + ξ2a

+
2 . Then

|N , ξ 〉 = (N !)−1/2(A+)N |0, 0〉 = 1√
N !

N∑
s=0

N !ξ s
2ξN−s

1

s!(N − s)!

(
a+

2

)s(
a+

1

)N−s |0, 0〉

=
N∑

s=0

Cs(N )ξ s
2ξN−s

1 |N − s, s〉 = eiNφ1

N∑
s=0

Cs(N )zs

(1 + |z|2)N /2
|J ;−J + s〉

= eiNφ1 |J ; z〉
where Cs(N ) ≡ √

N !/
√

s!(N − s)!, the definition z = ξ2/ξ1 has been used, and φ� is the
phase of ξ�. Moreover, |J ;−J +s〉 ≡ |N−s, s〉, where J = N /2, can be seen as the mth vector
(with m = −J +s) in the standard basis {|J ;m〉 : J3|J ;m〉 = m|J ;m〉} of algebra su(2) within
the Schwinger boson picture of spin operators J3 = (

a+
2 a2 − a+

1 a1
)/

2, J+ = a+
2 a1 = (J−)+.

State g|�〉 = eζJ+−ζ ∗J−|J ;−J 〉 = (1 + |z|2)−J ezJ+ |J ;−J 〉, obtained through the standard
decomposition [2] g = eζJ+−ζ ∗J− = ezJ+ eJ3 ln(1+|z|2) e−z∗J− , coincides with state |J ; z〉 just
defined, where z and ζ are in the same phase and |ζ | = tg|z|.

Appendix B. Derivation of dynamical equations for zj

Based on dynamical equations (8) governing the evolution of variables f i
m one has

i
dαi

dt
=

∑
m

√
m + 1

[
i
df̄

i

m

dt
f i

m+1 + i
df i

m+1

dt
f̄

i

m

]

=
∑
m

√
m + 1

[
f i

m+1

(
−U

2
(m2 − m)f̄

i

m +
√

m + 1f̄
i

m+1�i +
√

mf̄
i

m−1�
∗
i

)

+ f̄
i

m

(
U

2
(m2 + m)f i

m+1 −
√

m + 2f i
m+2�

∗
i −

√
m + 1f i

m�i

)]

=
∑
m

Um
√

m + 1f̄
i

mf i
m+1 + �i

[∑
m

(
(m + 1)f̄

i

m+1f
i
m+1 − mf̄

i

mf i
m

) −
∑
m

f̄
i

mf i
m

]

+ �∗
i

(∑
m

√
m + 1

√
mf̄ i

m−1f
i
m+1 −

∑
m

√
m + 1

√
m + 2f̄

i

mf i
m+2

)
,

where the index-m range is [0,∞]. Thus α̇i is formed by three terms. Substituting
m → m + 1 in the first summation of the third term (one should note that f̄

i

−1 = 0) shows

that the latter vanishes, while, in the second term, �m

[
(m + 1)f̄

i

m+1f
i
m+1 − mf̄

i

mf i
m

] = 0
is easily proven. Further simplification is achieved if the on-site normalization condition
〈Fi |Fi〉 = ∑

m f̄
i

mf i
m = 1 is imposed. Note that a choice of (9) automatically ensures such a

condition since|Fi〉 = |zi〉 and Glauber CS are such that 〈zi |zi〉 = 1. Under this circumstance
the second term reduces to �i .
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Appendix C. Conservation of N and other constants of motion

Upon recalling that N = 〈
|N |
〉 = 〈
|∑j nj |
〉 = ∑
j

∑
n n

∣∣f j
n

∣∣2
where 〈
|nj |
〉 =∑

n n
∣∣f j

n

∣∣2
and n ∈ [0,∞], j ∈ [1,M], let us consider the Poisson bracket of N and H

{N ,H} =
∑

j

∑
n

n
{∣∣f j

n

∣∣2
,H

} =
∑

j

∑
n

n
[
f̄

j

n

{
f j

n ,H
}

+ f i
n

{
f̄

i

n,H
}]

= − i
∑

j

∑
n

n

[
f̄

j

n

(
U

2
(n2 − n)f j

n −
√

n + 1f
j

n+1�
∗
j − √

nf
j

n−1�j

)

+ f j
n

(
−U

2
(n2 − n)f̄

j

n +
√

n + 1f̄
j

n+1�j +
√

nf̄
j

n−1�
∗
j

) ]

= − i
∑

j

�∗
j

∑
n

(√
n + 1f

j

n+1f̄
j

n

) − i
∑

j

�j

∑
n

(−√
n + 1f̄

j

n+1f
j
n

)
= − i

∑
j

�∗
jαj −

∑
j

�jα
∗
j = −i

∑
j

αj

∑
�∈j

(T�jα
∗
� − T�jα�) = 0.

Then dN /dt = {N ,H} = 0. A similar calculation allows one to evidence that other M
constants of motion are involved in the dynamics of f

j
n . These are Ij = ∑

n

∣∣f j
n

∣∣2
for which

{Ij ,H} = 0. Quantities Ij are in involution with N , α〉 and Ii namely {Ij ,N } = 0 and
{Ij , αi} = 0 ∀ j . One can easily check as well that {Ij , Ii} = 0 for each i and j .

Appendix D. Formulas relevant to the SU(M)-CS picture

When obtaining L(ξ) = ih̄〈ξ |∂t |ξ 〉 − 〈ξ |H |ξ 〉 one needs to calculate 〈ξ |∂t |ξ 〉 and 〈ξ |(ni −
1)ni |ξ 〉 in H(ξ) = 〈ξ |H |ξ 〉. Concerning 〈ξ |(ni −1)ni |ξ 〉, (recall that |ξ 〉 ≡ |S; ξ 〉) one should
observe that [ai, (A

+)s] = sξi(A
+)s−1, and that

ai |ξ 〉 = aiρS(A
+)S |0〉 = ρS[(A+)Sai + Sξi(A

+)S−1]|0〉 =
√

Sξi |ξ ′〉
where ρS = 1/

√
S!, and |ξ ′〉 = ρS−1(A

+)S−1|0〉 is a (S − 1)-boson coherent state. Iterating
this calculation gives a2

i |ξ 〉 = ξ 2
i

√
S(S − 1)|ξ ′〉 with |ξ ′〉 = ρS−2(A

+)S−2|0〉. Therefore
〈ξ |ni |ξ 〉 = · · · = N |ξi |2 whereas

〈ξ |(ni − 1)ni |ξ 〉 = 〈ξ |(a+
i

)2
a2

i |ξ 〉 = S(S − 1)|ξi |4〈ξ ′′|ξ ′′〉 = S(S − 1)|ξi |4.
Similarly, one finds 〈ξ |a+

mai |ξ 〉 = 〈0|ρSA
Sa+

maiρS(A
+)S |0〉 = Sξ ∗

mξi〈ξ ′|ξ ′〉 = Sξ ∗
mξi . For two

generic states |η〉, |ξ 〉 the latter becomes 〈η|a+
mai |ξ 〉 = Sη∗

mξi

(∑
i η

∗
i ξi

)S−1
where the inner

product 〈η|ξ 〉 = (
∑

i η
∗
i ξi)

S of two S-boson states |η〉, |ξ 〉 has been used. In the effective
Lagrangian L term 〈ξ |∂t |ξ 〉 can be recast as

〈ξ |∂t |ξ 〉 = 〈ξ |
∑

j

ξ̇j ∂ξj
|ξ 〉 = ρ2

S−1〈0|AS−1
∑

j

ξ̇jAa+
j (A+)S−1|0〉 = 〈ξ ′|

∑
j

ξ̇jAa+
j |ξ ′〉

= 〈ξ ′|
∑

j

ξ̇j

[
a+

j A + ξ ∗
j

] |ξ ′〉 =
∑

j

ξ̇j ξ
∗
j +

∑
j

∑
m

ξ ∗
mξ̇j 〈ξ ′|a+

j am|ξ ′〉

=
∑

j

ξ̇j ξ
∗
j +

∑
j

∑
m

ξ ∗
mξ̇j (S − 1)ξmξ ∗

j =
∑

j

ξ̇j ξ
∗
j + (S − 1)

∑
j

ξ̇j ξ
∗
j

= S
∑

j

ξ̇j ξ
∗
j .

Concluding, the four/two-boson expectation values just obtained provide the effective
Hamiltonian 〈ξ |H |ξ 〉 = U

2 S(S − 1)
∑

j |ξj |4 − S
∑

〈j,�〉 Tj�ξ
∗
j ξ� occurring in L(ξ).
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Appendix E. Derivation of operator A+

After setting
∑M

k=2 θ2
k := θ2, the action of eiD on a+

1 is given by the standard formula

eiDa+
1 e−iD =

∞∑
s=0

is

s!

[
D, a+

1

]
s

where
[
D, a+

1

]
s

= [
D,

[
D, a+

1

]
s−1

]
,
[
D, a+

1

]
1 = [

D, a+
1

]
, and

[
D, a+

1

]
0 = 1. Observing that[

D, a+
1

]
2r

= θ2ra+
1 and

[
D, a+

1

]
2r+1 = θ2rQ with Q = ∑M

k=2 θka
+
k , one obtains

eiDa+
1 e−iD =

∞∑
r=0

(−)r

(2r)!
θ2sa+

1 +
∞∑

r=0

i(−)r

(2r + 1)!
θ2sQ = a+

1 cos θ + iQ
sin θ

θ
=

M∑
j=1

yja
+
j

where y1 = cos θ and yk = iθksin θ/θ if k �= 1.

Appendix F. Two-boson operators of algebra su(M)

The fact that T (ζ ) ∈ SU(M) is easily demonstrated by recalling that, within a Schwinger-
like picture, algebra su(M) can be realized in terms of two-boson operators a+

j ak, a
+
k aj

with 1 � j � M − 1 and j + 1 � k � M that play the role of lowering and raising
operators, respectively. This set is completed by the generators of the Cartan-subalgebra
{hk, k = 2, . . . ,M : [hk, h�] = 0} where each of the M − 1 operators hk can be written as
an appropriate linear combinations of number operators ni = a+

i ai, i = 1, 2, . . . , M . We
note that, consistent with the presence of the group-invariant operator N = ∑M

i=1 ni , only
M − 1 operators hk can be realized with M operators ni . A generic element of G = su(M) ={
a+

j am(m �= j) : m, j ∈ [1,M];hk : k ∈ [2,M]
}

is thus given by

M−1∑
j=1

M∑
k=j+1

(
zkja

+
j ak + z∗

kj aja
+
k

)
+

M∑
k=2

αkhk

where zkj = xkj + iykj and xkj , ykj , αk ∈ R. Since elements g ∈ G of a Lie group G
are generated by the Lie algebra element a ∈ G = Lie(G) through the exponential map
g = exp(ia) then the latter formula shows that T (ζ ) ∈ SU(M).
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